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ABOUT THE GRAVITY GRADIOMETRY CONFERENCE ...........................
The First Gravity Gradiometry Conference was held at the Air Force Cambridg

Research Laboratory (AFCRL, now GL) in 1973. Its purpose was to provide a *
forum to evaluate and compare the efforts of three vendors (Charles Stark
Draper Lab, Hughes Research Lab and Bell Aerospace Textron) in still-emerging '

areas of gravity gradiometry. About 15 people attended, most of them from
the companies mentioned above or the Terrestrial Sciences Division at AFCRL.
In contrast, the 1988 Conference had a guest list of 60 plus attendees, with
participation from academia (foreign and domestic), private industry and
Government. The papers presented were not restricted to gradiometry alone.
Indeed, the scope of this annual event has broadened considerably since 1973.

In 1988, a major milestone as achieved with the delivery of the Gravity
Gradiometer Survey System (GGSS) to DMA. This one-of-a-kind moving base
gravity gradiometer was manufactured for DMA by Bell Aerospace Textron of
Buffalo, NY under GL management.

The Geodesy and Gravity Branch of the Earth Sciences Division of the Geophysics
Laboratory, Hanscom AFB, Massachusetts, has always organized the Conference.
With the exception of the first two conferences, all the others had been
held at the US Air Force Academy in Colorado Springs, Colorado. In 1989,
however, the 17th conference returned to Hanscom AFB at the recently completed
GL Science Center. This conference reviewed the status of the GGSS and
projected the future of gradiometry in terms of instrumentation and applications.
Technical papers covered test program results, applications to gravity field
mapping, gravity signal processing geophysical interpretation, space applications,
inertial navigation aiding, new instrumentation and application to strategic

arms reduction treaty verification.

If you are not already on our mailing list and would like to attend future
conferences, or if you have any questions, please write to:

GL/LWG
Hanscom AFB, MA 01731-5000

USA

Copies of conference proceedings for prior years are not available. Also, we
appreciate any comments or suggestions you may have rierding this document.
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ABSTRACT

By

ANDREW D. GRIERSON

BELL AEROSPACE TEXTR;N
Division of Textron, Inc.

P.O. Box One
Buffalo, New York 14240-0001

GGSS RAIL GARRISON AND VAN SURVEY EXPERIENCE

Operational problems are described with
observations and results relating to the
acceleration environment on the rail car.
Techniques used to identify and compensate
for sensitivities are covered. Survey
results are presented.



00
u 00

a- LU

U.C

0i 0



00 00

_jota 00
00

-~ 00

== M
tn-

=m

LD

>~- o-.LU2

(n =, 0c L= .

o LJ LLO A0

-)

V) ~ LU) 0C4

>- = 2=
= nL



t= cn LUI C

SUj LO2
0 2c LUJ LU

C/J V) J =
2c C/. n

LU ~ =C.# CcCt

CDCt

C4,



U-

VP- LLJLt

L~ ~- -

b--" LA .

LU 0 0

LU

0 0 0



E

0o



4)
ULU

(no

E)

(I)

>1k

00
Lu

CE)



>I

U
I.. w

zz
>l >

C4

Iwo 8

o =W

I-

(Ul0
i 0 0

. cc



w

~ N LU

2c N LJ (0

mU LUJ 0

2c LU d

Zo -j L- L2ILJ U. :.0
U - 0 L LL

(Z- wLw-J LU

(-) = U- -
P.. b.." O

0 LU 0CD.)
Lui (. LUW U-J LA.U%.., c- *-5 -

c/,I~Il U- dU=-

0 LU L 0 I-

C - LU

_ ~ 0

LL 0- u L

CD U, L~ CN w Cr- 3
= -- I 0j =

m CL U*A -cr

* 00. 0 C~ U (



LU LJ

LU -j#
V))

LoL

00



LALU

LLLJ L
2= =

>- LL. LLU

0=LW LUL

M- 2- 0-.4

2c LU (.

Ij CC# cn-L

SLUJ
LU 2c2 W-

LU ... ~LLJ N >.
Li 0 C4 =/ V;

C- 0- 2c-
-- J

LU >- w~ w

0c P-

~~2 L -LU 0 Z

LU>- -i ---so-2c ac~ 20 L



U- =E

a. ~ LLJ

~LL.
LW--

=A QL J L

2c L.LJ.

-l

ct

=~ LJ 2 c
=0

CL. CD - j 5-

U->

12



LI,

ANN

________00 00

I ci)

LL-4

13



LUJ

LUJ

LUL

Cdn LZ -j

(.DA

C.C4
LL C,, U

CL C4~ 0
0 iJ

xd> LU J Oc
LL 2C CL

=

0- 0- 3LCL C
-- ~ C,,~

UC5 0 ,

(A LU 4



- C-

U-0

I-a
Al1 1'



LUJ LU

a4c LU 0
LUJ

0 *

uI-

LU

0 LU 0

- - (d

L U 0 0i
LL w -4 r- ~LU

-~cz~ A L.J

(.J 6..
cna.- X (Aac2

=& (. 0 * - .0- zA . W- 0-$ l
I-j 2CC - < - C

_ 2C -j
> -~ LULL

V) V ; uj E
0LI >. - u

t C/ = §~ (AJ >

LUs w CD-

LU LUJ > -
LU = ..j 0 I-i U..

LLJ 0 - ..

LU 4 0 LL.

~ ~LuLU 4c = (

16



int
i7



LUJ

-LL. L
P-4 LU.

P-4 C=U

LU CD 2W

C.,D
-- >

= LJU

= =

LL. L5 L r*-o c

L)-- Lo 2c

=4 E X j~ cn L

cc 0 w- 0L

(4 ~ ~ LUJ 0-P.

U- 3c
CM

P-4 LU- CD~
L~~~I cn N-

=U= I-L C'- CL
LL- 0jU-

Z.- =- k L

Lo w

-,LUJi LLU

cc U- LUL .)
U- U7C/ LUJ

=0 (m



U-j

cn=

LLLU

(3.

= LUJ
CL,

0 0 LU 0

b-

(... Uj L

- = -.0

LU 0

19



ABSTRACT

By

ANDREW D. GRIERSON

BELL AEROSPACE TEXTRON
Division of Textron, Inc.

P.O. Box One
Buffalo, New York 14240-0001

GRAVITY GRADIOMETER SURVEY SYSTEM

STAGE I DATA REDUCTION

Suppression of motion-induced signals and errors is vital
to the measurement of gravity gradient signals on a moving
vehicle. Post-mission processing of data from the Bell
Gravity Gradiometer Survey System (GGSS) uses intrinsic
features of the system design to accomplish this.

GGSS mounted on a railroad freight car experienced a
high vibration environment. Post-mission compensation
of the recorded data has removed much of the sensitivity
to this environment.

improvements in platform control resulted from experiences
in railroad operation. Subsequent road trials have demon-
strated the ability to measure gradients of local topographic
features.
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ABSTRACT

By

ALBERT JIRCITANO

BELL AEROSPACE TEXTRON
Division of Textron, Inc.

P.O. Box One
Buffalo, New York 14240-0001

GRAVITY BASED PASSIVE NAVIGATION

Passive covert Inertial Navigation System (INS)
updating can be implemented by comparing measured
gravity gradients with mapped values and using the
error in an optimal filter to define in real time
the INS. A parametric study is carried out
showing performance as a function of;
o Gradiometer accuracy and number of gravity

gradient sensors.

o INS - gyro and accelerometer accuracy

o Map quality

o Gravity field characterization (field intensity
and frequency content)

o Altitude

o Velocity
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FOREWORD

This document contains material used in a presentation
given by The Analytic Sciences Corporation. The material is not in-
tended to be self-explanatory, but rather should be considered in the
context of the overall presentation.
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Obtaining Earth Surface and Spatial Deflections of the Vertical from
Free-Air Gravity Anomaly and Elevation Data Without Density Assumptions

DAVID M. GLEASON

GEOPHYSICS LABORATORY
HANSCOM AFB, BEDFORD, MA. 01731

ABSTRACT: Moritz (1980) presents a density-free scheme allowing for the
analytical continuation of a given set of free-air gravity anomalies to any
desired level surface if a corresponding set of elevations (e.g., above MSL)
is available. An efficient spectral implementation of this scheme is
discussed by Sideris (1987). A subsequent spectral execution of the
planar Vening-Meinez equation on the continued anomalies yields
deflections of the vertical on the chosen level surface. The deflections
are brought back to the Earth's surface via a spectrally implemented
Taylor series. The series' convergence rate depends on a)the ruggedness of
the local topography and b)the resolution of the input gravity and elevation
gridded data. Deflections at a constant altitude above the level surface
are obtained through a routine spectral execution of the planar upward
continuation integral. Two sites, having diverse topographies, were
surveyed for 1' by 1' mean free-air anomaly and elevation values and for
smaller sets of astronomically-determined deflections to serve as control
or "truth" values. In a topographically-tranquil, but gravimetrically
turbulent Oklahoma site the overall RMS of the diIeIr.e&a . between true
and predicted deflections was 0.3 arc secs and in a rugged New Mexico
site, using less reliable truth data, the RMS was 0.6 arc secs. Potential
pitfalls of the 2 dimensional Fast Fourier Transform pair are discussed
with an emphasis on unwanted circular convolution effects which, if
unaccounted for, can increase the error in predicted deflections by as
much as 100%.
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OBTAINING EARTH SURFACE AND
SPATIAL DEFLECTIONS OF THE

VERTICAL FROM MEAN FREE-AIR

GRAVITY ANOMALY AND ELEVATION
DATA WITHOUT DENSITY

ASSUMPTIONS.

DAVID M. GLEASON

GEOPHYSICS LABORATORY
HANSCOM AFB, MA. 01731
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P

i Zp hp-h'

Q, pChosen Surface

S(Z() 0)

h' Earth Surface
Q

+ .Ellipsoid

Runge's Thm. states one can always find a

harmonic function T , arbitrarily close to
TEXTERNAL, that can be regulary continued
(be it upward or downward) from the ground
to a chosen level surface.
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Su 2 -
gAgp, Zp a 2Ag, p,

Agp = Ag'p, + Zp" oZ 2+ -. Z2 + ....

2

'p, Z2 a2 v -'2=p p,+ oz + 2 + .............
P az 2! a

al"I pI 2, a2 11]-Il ' ~ Z2! zp,
lp- Ip,+ "p oz  2! -a.....

•The Ag' set reflects the earth's exterior
(not, interior) gravity field. Used in StoKes'
formula, it yields a T' which is harmonic above
the chosen surface and which aae with the
actual T on and above the Earth' s surface.

* So, under such a continuation of TEXT ,

masses outside the chosen surface are, in
-effect, shifted to its interior.
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Again

_Ag'p, Zp a2 gp,
Ag = Ag'p Zp a o *z

2

Moritz' density-free inverse solution is given
by

Ag'p- g~p~ glp, g-p' + gpAp, = g p+ g f+ ,~I+gp ......

where
90 p = the observed Agp

0
1 

_gp

gp, =-ZPe Dz

1 2 2 0

2. gp, zp Dgp
gp =-Zp" P Z a2! aZ2

Etc., Etc.
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* In gl p, = -zp. (SAg/ z), the partial will
be treated as a planar surface operator.

i.e.
0

1 
_gpgp, -Z p" oaz

o 000 g (xly)-g (Xp,yp)

-Zp 2 2 3/2dx dy
-0 [(x-xp) +(Y-Yp) I

which is a convolution.
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NOTES:

1). Due to only a finite grid of Ag input values,
the spectrum of

AgREDUCED = AgGIVEN - AgS.H. EXPAND

is computed.

2). As in all applications of the 2D FFT pair,
be aware of

* Aliasing
* Spectral Leakage
* Circular (non-linear) Convolution Effects

125



NOTES:.

1. After obtaining the gridded set of Ag'
values on the chosen surface, one can
immediately obtain gridded sets of 4' and rj'
deflections on the chosen surface via a
routine spectral execution of the planar
Vening Meinez eqn using the applicable
transfer functions.

2. One can then obtain gridded sets of
spatial deflections at a constant altitude h
above the chosen level surface through a
routine spectral execution of the planar
upward continuation integral (using the u.c.

transfer function eo)h).

3. One can efficiently obtain gridded
deflections on the irregular Earth surface
via a spectral execution of the Taylor
Series linking 4'p, and T'p, to p and Ti.
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Topography of Central 3' by 30 New Mexico
Area.

I
g n1 Values

=86 mgals
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gfl=l Values

91 MAX
86 mgals

gfn= 2 Values

9MAX=
72 mgals
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- gn=2 Values
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Overall RMS values of 378 (Astro-Predicted)
4 and q differences, in arc secs, from 1' New
Mexico data and the Newer Astro set.

n Truncation Level

0 0.61" 0.75"
1 0.59" 0.74"
2 0.59" 0.74"
3 0.59" 0.74"

NOTE:

4Predicted = - while

'Astro (D

where * - = (f h/R)sin2o, is the
well-known reduction for the normal curvature
of the plumb line.

* The predicted (gridded) deflections were
interpolated to the astro locations.
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From Data Types and Their Spectral
Properties, by K.P. Schwarz:

Percentage of Total Value, by Harmonic
Degree n, for Tz and Tzz (i.e., Ag and
aAg/az).

low medium high very high
n e (2,36) (37,360) (361,3600) (3601,36000)

(50 grid) (30'grid) (3' grid) (18" grid)

Tz 22.5 41.9 32.7 2.8

Tzz 0.0 0.8 39.0 60.2

* NOTES:

A 1'grid <=> nmax= 10800
A 30" grid = nmax= 21600
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SUMMARY:

1. The spectral approach allows for efficient
predictions of deflections and height
anomalies at a resolution matching the input
data.

2. The n=1 topographic corrections were
beneficial in near-mountain splotches where
the input Ag and h data was reliable but were
detrimental in such areas where the data was
suspect.

3. The extraction of ultra-high frequency
information from lower order 1' or 30" mean
gradients is questionable.

4. Noise in such input data might render
higher order (e.g. g3 14: 5 16 1 ..... ,corrections
meaningless.

5. Interpolated grids of anomalies and
heights fail to account for higher frequency
terrain effects.
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Distinguishing Nuclear- from Conventionally- Armed
Cruise Missiles with a Gravity Gradiometer

Dr. John A. Parmentola
Center for Science and International Affairs

John F. Kennedy School of Government
79 John F. Kennedy Street

Harvard University
Cambridge, MA 02129

Abstract

I will discuss an analysis of an application of the gravity
gradiometer, that has been designed at Draper Laboratories, which
might be useful during missile production for distinguishing
conventional from nuclear armed cruise missiles in a nonintrusive
way. The motivations for exploring this potentially important
application of this device will also be discussed.
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Distinguishing Nuclear From
Conventionally Armed Cruise Missiles

I. Brief Introduction

Arms control and START :

Long-range nuclear sea-launched
cruise missiles or SLCMs.

For the U.S. these are the various
versions of the Tomahawk.

For the Soviets these are the SS-N-
21s.

Cruise Missiles :

Pilotless aircraft

Sophisticated autonomous guidance

Fly low to avoid radar

Nuclear or conventional payloads

Variety of launch platforms
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Cruise missiles along with their
protective cannisters are loaded
into launchers.

Upon firing the cruise missile
breaks through the cannister while
being propelled by a rocket motor.

Rocket motor burns until cruising
speed is reached, then a turbofan
engine takes over.

Guided to its target by local terrain
maps and for the conventional
version an additional digital image
of target.

The issues I want to address in this
talk are :

(1) Why are long-range nuclear SLCMs
an important issue ?

(2) What problems do SLCMs pose for
verification ?

(3) How could a gravity gradiometer
contribute to a SLCM verification scheme ?
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The quick answers to these questions
are :

(1) Because long-range nuclear SLCMs
are a contentious issue within START.
There are important political, military, and
economic factors which contribute to this
situation.

(2) Several design characteristics of
long-range SLCMs make verification of
limits on SLCMs relatively hard, but far
from impossible in my opinion.

(3) Because long-range nuclear- and
conventionally-armed SLCMs have
significantly different internal mass
distributions a gravity gradiometer could
effectively distinguish between them. This
would ensure that nuclear cruise missiles
are not being falsely counted as
conventional under an arms control treaty.
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il. Why worry about Sea-Launched Cruise
Missiles or SLCMs ?

There are mi:itary, economic, and
political dimensions to this question.

Military:

Sneak attack of bomber bases and
command and control system with a
small number of stealthy SLCMs. No
early warning !

Economic:

The costs of deploying an effective
early warning system are high.

Political:

SLCMs contributed to the stopping
of START. The most contentious
aspect has been verification.

Simplest situation is a ban on both
conventional and nuclear. U.S. Navy
opposes a total ban, because it likes
the conventional anti-ship version.
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Domestically the public has
demanded reductions and it is
unlikely that SLCMs will be
excluded.

Arms control might provide the
means for controlling the threat,
save the country some money for an
early warning system, and solve
some political problems.
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Ill. What are long-range SLCMs ?

I will restrict my discussion to U.S.
cruise missiles.

U.S. Tomahawk:

Land-attack nuclear has a range of
2800 km.

Land-attack conventional has a
range of 1500 km. Has shorter
range due to much longer and
heavier warhead, less fuel, and
more guidance equipment for
targeting.

Anti-ship conventional has a range
of 500 km. Even more guidance
equipment, because it goes after
moving targets and has less
efficient engines.

Verification problems:

Nuclear and conventional versions
all have the same airframe.
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Minor visual external differences
are not useful for distinguishing
between them.

Launchers are dual-purpose.

This implies that NTM is useless. More
intrusive forms of monitoring are required
such as on-site inspections of:

Storage facilities

Service facilities

Testing

Deployment modes

Production - Gravity Gradiometer
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IV. Some difficulties with SLCM

verification

Simplest situation:

Total ban on all long-range SLCMs -
Requires the dismantling of
infrastructure needed to produce,
store, service, test, and train with
these weapons.

Much harder situation :

Problems occur when a category is
allowed. Infrastructure for
conventional anti-ship version of
Tomahawk useful for producing
long-range nuclear SLCMs.

Difficulties with verifying a ban on
nuclear with a limit on conventional :
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Possibility that nuclear warhead is
mated to a cruise missile in the
factory and designated as
conventional. This could be detected
nonintrusively with nuclear
radiation detectors or intrusively
with x-rays or a beam of neutrons.

It is not necessary that a nuclear
warhead be mated in the factory to
cheat. What is needed is a tested
production line. Place a dummy
warhead with the same mass
distribution as nuclear warhead.
This could be detected
nonintrusively with a gravity
gradiometer.

If an effective nonintrusive method of
distinguishing nuclear and conventional can
be found then tags can be used to identify
legal cruise missiles throughout their life-
cycle.

142



V. Using the Gravity Gradiometer for
Production Monitoring

Mass density distributions of a nuclear
and conventional Tomahawk :

Nuclear warhead is more than
twice as dense, half as long, and
more forward in location than the
conventional warhead.

More than half the volume of fuel in
the nuclear version is in roughly the
same location as the warhead in the
conventional version; however the
density of the fuel is roughly 20 %
less than the warhead.

Draper three gradiometer device:

A properly packaged and field
tested device would cost about 2
million dollars, i.e. the price of a
Tomahawk.
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This version would minimize errors

due to jitter.

Accurate to the 1 Eotvos unit level.

Response time is relatively short.

Place on a tripod in a room.

A Tomahawk would pass by the
device at a certain rate while the
gradiometer responded and provided
a complete scan of the missile.

It would be desirable to allow for
several different scans along the
missile length at different distances
from the missile axis.

Since the response time of the
device is relatively short the time
required to scan a cruise missile is
not a significant factor in the
monitoring process.
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The resolution of the device, i.e. its
capability of discerning details
about the individual components of a
cruise missile, is easy to control by
limiting how close to the missile the
gradiometer can approach.

Estimating the distance for a
hypothetical measurement:

Specify the desired level of
accuracy. Assume for the moment
that cruise missile is a very long
cylinder of uniform density.

An inaccuracy in a measurement of
the radial gradient of the
gravitational field translates into
an uncertainty in the determination
of the mass density or
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8F'/F' = &p/p

op/p = r 2 6F'/( 2Ta 2 p G

6F= 1 Eotvos unit

op/p = 0.02

a = 0.265m

p 2 x 103 kg/m 3

r 1m

Model of mass density used in the
calculations:
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The aluminum skin of the
hemispherical nose and its volume
mass density are approximated by
points located at their respective
centers of mass.

The remaining components including
the airframe are treated as lines of
mass along the axis of the missile.

For this model the gradiometer will
be sensitive to the mass per unit
length.

Results:

Simulation of the radial gradient of
the radial component of the
gravitational field, Frr, produced
by a conventional and nuclear cruise
missile along their length.

If measurements are not made
continuously along the missile axis,
then the stepsize, i.e. the distance
between measurements, must be
less than the size of an object in
order to resolve it.
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Radial Gradient Comparison at r = 1m
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Radial Gradient Comparison at r = 0.5m
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Radial Gradient Comparison at r = 1m
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Radial Gradient Comparison at r 0 .5m
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Model of Conventional SLCM

wins 7 /

Section Component Mass Length Radius Skin Thickness Average Density

1 * Guidance System 68 kg. .646rn .252m .013m .61gm/cc
2 Fuel 27 .128 .252 .013 1.07
3 Warhead 456 1.770 .252 .013 1.30
4** Fuel 176 1.400 .244 .021 .67
5 Engine 59 1.640 .252 .013 .18
6a Fuel 1 78 .652 .220 .000 1.80
6b Rocket 121 .652 .265 .000 2.70
7 Skin or Airframe 365 5.590 2.70

1" - Nose is assumed to be a hemisphere of radius .252m.

4"" - Wings are included in airframe which accounts for smaller Inner radius. Top
surface of wings Is assumed to have an area of 1.02 m2 and the mass of the wings is
assumed to be 52.5 kg.
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Model of Nuclear SLCM

Wings/

2b 7 Y

Section Component Mass Length Radius Skin Thickness Average Density

1 * Guidance System 46 kg. .458m .252m .013m .61 gm/cc
2a Warhead 123 .866 .130 .000 2.70
2b Fuel 123 .866 .252 .013 .97
3 Fuel 260 1.220 .252 .013 1.07
4 Fuel 176 1.400 .244 .021 .67
5 Engine 59 1.640 .252 .013 .18
6a Fuel 178 .652 .220 .000 1.80
6b Rocket 121 .652 .265 .000 2.70
7 Skin or Airframe 365 5.590 2.70

1" - Nose is assumed to be a hemisphere of radius .252m.

4". -Wings are included in airframe which accounts for smaller inner radius. Top
surface of wings is assumed to have an area of 1.02 m2 and the mass of the wings is
assumed to be 52.5 kg.
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17th Gravity Gradiometry Conference

12 - 13 October, 1989

Air Fo-ce Geophysics Laboratory
Hanscom AFB

Advances in Dynamic Estimation

Dave Sonnabend
Jet Propulsion Laboratory

California Institute of Technology

Abstract

In prior years I have talked about magnetic isolation of
instruments, with only short allusions to our work in
dynamic estimation to deal with rotation correction in
floated gradiometers. This year's talk will be almost
entirely devoted to estimation. As the theory has been
exposed at other conferences and seminars, and is a central
topic in my book on gradiometry, it will only be sketched
here. However, there are several new developments,
including improvements to our models and filters,
application to a Lunar Observer mission, and computational
techniques for dealing with self gravity. Also, if no one
from NASA Hq. shows up, I'll discuss NASA's latest plans in
gravity measurements.
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ACCELEROMETER

ENSEMBLES

CONFIGURATION PROOF

(0.5 m EDGE) MASS

TRIANGLE F

SQUARE FC

TETRAHEDRON FC

OCTAHEDRON F

CUBE FACES F

CUBE CORNERS FC

NOISE LEVEL

SENSITIVE 1.3 x 10-12 m/sec2 - Hz1/ 2

INSENSITIVE 2.5 x 10 -10 m/sec2 - Hz1 /2
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RESULTS ON THE ESTIMATION OF GEOPOTENTIAL COEFFICIENTS FROM

A SIMULATION OF A SATELLITE GRAVITY GRADIOMETER MISSION

Srinivas V. Bettadpur, Bob E. Schutz, John B. Lundberg

Center for Space Research, University of Texas at Austin, Austin, Tx 78712

The NASA Satellite Gravity Gradiometer Mission, desi~ned to measure the tensor
of gradients of accelerations due to gravity, promises a substantial increase in the
knowledge of the fine scale features of the gravity field of the earth. One possible mis-
sion scenario consists of the gradiometer mounted in a satellite traveling in a polar,
frozen perigee, drag free orbit and measuring the six components of the tensor of gravity
gradients in a suitable reference frame.

Some results are reported from an initial simulation of the estimation of the geopo-
tential coefficients from measurements made on such a satellite gradiometer mission.
Using a small reference gravity field (18 by 18 subset of a GEMT1 error model), the gra-
diometer observations along a true orbit were simulated in a geocentric equatorial coordi-
nate frame. Zero mean Gaussian random noise with different standard deviations were
added to the simulated observations. During the estimation process, the observations
were modeled along a nominal orbit using Pines' fully normalized, nonsingular formula-
tion. To simulate a range of orbit accuracies, the differences between the nominal and
true orbits were varied from 16, 69 and 19 meters to 16, 69 and 19 cm in the radial,
transverse and normal directions, respectively. The geopotential coefficients were
estimated from a least squares fit of the simulated gradometer data in the presence of dif-
ferent levels of observation noise and orbit errors. The estimated coefficients were then
compared to the coefficients of the reference gravity field, in the sense of degree aver-
aged errors and the errors produced in a global geoid.

The results obtained from the initial simulations indicate that to recover the global
geoid to about a centimeter root mean square error, the instrument must have a sensitivity
of l0e E.U. and the radial orbit accuracy must be within 20 cm. For example, with errors
of 16, 69 and 19 cm in the radial, transverse and normal directions, and with 10' E.U.
noise, the global geoid error was 0.6 cm (RMS). On the other hand, with the same orbit
error, but with 10 E.U. noise, the global geoid error increased to 45 cm (RMS).

Significant errors in the estimated coefficients are seen to be caused by the adjust-
ments required to model the systematic gradient residual due to the point mass term I/r.
The permissible radial orbit error is governed by the ratio of this systematic residual gra-
dient to the noise level.

These results, while demonstrating the role of some error sources in the process of
estimation, provide a baseline against which the results of approximate methods can be
compared.

171



RESULTS FROM THE ESTIMATION OF GEOPOTENTIAL COEFFICIENTS

FROM A SIMULATION OF A

SATELLITE GRAVITY GRADIOMETER MISSION

Srinivas Bettadpur

Bob E. Schutz

John B. Lundberg

Oct. 12, 1989

Center for Space Research

The University of Texas at Austin
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SATELLITE GRAVITY GRADIOMETER MISSION

Measurement of spatial variation of acceleration due

to gravity

Global, High resolution study

Goals .

Determine high degree and order (z 180) geopo-

tential field

Applications .

* Precision Orbit Determination

* Navigation

* Oceanography
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ANALYSIS OF DATA

Measurements : Gradients of gravity in an instru-

ment frame

Data.

* Orientation of the instrument frame

* Angular velocity of the instrument frame

* Orbit of the satellite carrying the gradiometer

Unknown •

Coefficients of the spherical harmonic expansion

of the geopotential
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ASSUMPTIONS FOR THE SIMULATIONS

* 4 second data sampling with 10- 4 or 10-2 E.U.

noise

* Signal consists only of the static geopotential

* Gradients are available in Geocentric, Earth fixed

frame

* Orbit of the satellite is separately available

* Error Sources :

Orbit eirors

Observation noise
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OBSERVATION MODEL

(tk) = V[VU("?(tk)]

Gij (?( tk)) = [Caj( tk)) Cnm
n,m

+ Onmij C?( tk)) Snm]

YkC(YT) = Yk (?N) + V [ Yk (-?N)] 8N + Ck

Hk(N)X + Bk + k ; k=,...
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THE ESTIMATOR

y = H (-N) + C

E[e] =0

E[eCT ] Y2 I

x = (HTH) - 1 HTy
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DESCRIPTION OF SIMULATIONS

Orbits .

* TRUE : 32 day ground track repeat period,

frozen perigee, circular, polar orbit

* BASIC NOMINAL : Fits true orbit with errors

(worst case).

16, 69, 19 m Radial, Transverse, Normal

* OTHER NOMINAL : Obtained geometrically

from TRUE and BASIC NOMINAL orbits

"Ni = ?T - '  , 0<Tji<1

Best case fit: 16, 69, 19 cms
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DESCRIPTION OF SIMULATIONS (contd.)

True Field

* 18 by 18 GEMT1 error model

Simulated Observations .

* Along TRUE orbit,

* from TRUE field,

* at 4 sec. intervals, for 5 days

Noise .

* additive N (0, o2) noise

* for a=10 - and y=10 - 2 E.U.
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DESCRIPTION OF SIMULATION (contd.)

Estimated Field :

y = V[VU(iT)]_ V[V(")]
rN

* Compute partials on the NOMINAL orbit

* Estimate same coefficients as in the TRUE field

Normal Equations .

* Square Root Free Givens' Rotations

* CRAY X-MP/24 at UTCHPC
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DESCRIPTION OF SIMULATIONS (contd.)

Description of errors :

* Fractional error

1 n
n 2n+ 1 _ 8nm

m=0

_~ 1 itrue-estimated]
2n+1 _ true

* Root mean square global "geoid" errors
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THE POINT MASS TERM 11
r

Maximum change of gradient for PMT

Radial distance
100 50 5 1 0.3(in meters)

[ AGij ]max
[A10iE.U.) 1325 663 66 13 4(× 10-4 E.U.)

Maximum change of gradient for perturbation field

360 by 360 field OSU86F ( x 10"4 E.U.)

DisplacementDisplmet adial Transverse Normal
(in meters)

100 5 2 3

50 3 1 2

5 0.3 0.1 0.2

1 0.05 0.02 0.03

0.3 0.016 0.006 0.01
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DEGREE AVERAGED FRACTIONAL ERROR AT END OF 5 DAYS
GRAVITY FIELD 18 BY 18 SUBSET OF GEMT1
EFFECTS OFORBIT ERRORS
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DEGREE AVERAGED FRACTIONAL ERROR AT END OF 5 DAYS
GRAVITY FIELD 18 BY 18 SUBSET OF GEMT1
EFFECTS OFORBIT ERRORS AND OBSERVATION NOISE
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DEGREE AVERAGED FRACTIONAL ERROR AT EN OF 5 DAYS
GRAVITY FIELD 18 BY 18 SUBSET OF GEMT1
EFFECTS OFORBIT ERRORS AND OBSERVATION NOISE
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RESIDUAL GRADIENTS FROM ERROR IN PMT

Radial orbit error = 16 meters

Component Gxx Gxy Gxz Gyy Gyz  Gzz

Avg residAvg re.U. 187 114 196 156 170 273( 10-4 E.U. )

* Systematic residual gradient is compensated by

estimated coefficients

* Low degree and order coefficients absorb the resi-

dual
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CONCLUSIONS

* Residual gradient due to PMT affects errors in all

coefficients.

* Allowable radial orbit error determined by ratio of

residual gradient to the noise level.

Explicitly model the PMT residual

Radial position from GPS tracking

* Convergence of the iterative corrections of the

gravity field and the orbit ?

* Simultaneous estimation of the orbit and the grav-

ity field ?
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The Use of Gradiometers in Space to Monitor Changes in the
Earth's Gravity Field.

Oscar L. Colombo, University of Maryland Astronomy Program,
Code 626, NASA Goddard Space Flight Center, Greenbelt, Maryland
20771.

Tides, and a variety of processes of non-tidal nature associated
with the oceans, the cryosphere, and the atmosphere, exert variable
loads on the solid earth, resulting in fluctuations of the external
gravitational field. A gravity gradiometer in orbit can, in principle,
monitor those changes to study both the loading phenomena and the
mechanical properties of the earth's interior governing the response
to the loading. Current space techniques, involving laser ranging to
spacecraft, can reveal only broad zonal features. An orbiting
gradiometer may provide a more complete picture. Given sufficient
accuracy, and enough observing time, such an instrument could
reveal the geographical distribution, in both latitude and longitude,
of changes that occur at frequencies ranging from daily to secular.
The gradients of such gravitational changes have most of their
power in the band from once per orbital revolution (100 minutes) to
once per tenth of revolution. Because of their long wavelengths, they
can be sensed at much higher altitudes than the sharper signals of
crustal origin that are the main concern of missions such as GRM or
Aristoteles. Surface forces like drag are much weaker and less of a
problem, and a mission may last for several years, instead of
several months. Typically, the signals are of the order of 10-7 E, and
Paik's cryogenic instrument could allow their resolution at the 1
percent level after one year of continuous observation. The bandwith
of the GRM device (1 Hz) is much larger than needed for this
application. However, useful life can be seriously limited by the
gradual boliling off of the liquid He coolant. Perhaps instruments of
a different kind, able to operate in space for many years, may be
constructed specially for sensing the long-wave changes in gravity.
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THE USE OF GRAD IOMETERS IN
SPACE FOR MONITORING

CHANGES IN THE GRAVITY FIELD
OF THE EARTH

OSCAR L. COLOMBO

UNIVERSITY OF MARYLAND ASTRONOMY PROGRAM
(NASA 60DDARD SFC, CODE 626.

6REENBELT, MD. 20771.)
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Table I. Some Recent Estimates of Temporal Variations in Zonal Harmonics o" 'he Earth's

Gravitational Field

Source Reference Variation AC 2 0  AC 3 0

" earthquakes Chao & Gross nonperiodic ±5xlO-13/yr ±2xlO13/yr
(1987) w/long period

trend

" deglaciation rebound Yoderet al. secular -3.0xl0 11/yr n.a.
of crust (1983) (observed)

Rubincam on LAGEOS -2.6x10 11/yr n.a.
(1984)

* snow cover Chao et al. periodic: annual lxl0-10 amp 6x10 -11 amp
(1987) semiannual 3x10 -11 amp lxl0 -11 amp

• continental drift Sconzo (1980) secular +2x10- 14/yr n.a.
Greenland moving at
10 cm/yr in latitude
with a depth of im-
mersion of 50 km

* tidal breaking Paddack (1967) secular < -5x10 "13  n. a.

* earth, ocean tides Christodoulidis periodic -- variable -- -- variable --
et al. (1988) (observed) nontidal contributions lumped in
and others tidal recoveries at forcing

frequencies

• air pressure & Gutierrez & periodic: annual Ixl0 9 amp n.a.
groundwater Wilson (1988) (shows atmosphere/oceans to be

-10 times water storage at annual
and -3 times at semiannual
periods)

semiannual 1.5x]0 "10 amp n.a.

• changes in sea Peltier (1988) secular 2xl0"11/yr n.a.
due to ice cap/ Yuen et al. 2 to 8x10"12/yr 2 to 7x10"12/yr
glacial melting (1987)

" growth of the Yuen et al. secular 5 to 10xl0"12/yr 6 to 1 x10-12/yr
Antarctic ice sheet (1987)
equivalent to drop
in sea level of
0.3 mm/year

* continental water Chao (1988) periodic: annual 1.5x10 "10 amp 1.4x10 -10 amp
storage, aquifers, semiannual 5xl0-11 amp 4x10 "11 amp
lakes secular 1xl0-12/yr n.a.
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POSSIBLE TECHNIQUES FOR MEASURING 6RAVITY CHAN6ES
FROM SPACE:

SATELLITE LASER TRACKING

PRINCIPLE: MAPS LON6-WAVE ZONAL SI6NALS BY
DETECTIN6 LAR6E RESONANT ORBITAL PERTURBATIONS

REQUI REMENTS: ONE LA6EOS/STARLETTE-TYPE
SATELLITE FOR EACH TWO ZONALS (APPROX.4 SATELLITES
ROU6HLY EQUISPACED IN INCLINATION TO RESOLVE ZONAL
CHAN6ES TO DE6REE 8. OR 25 DE6REES RESOLUTION)

LIMITATIONS: DRA6 CORRUPTS SI6NALS. ONLY ZONALS
RESOLVABLE, SEVERAL SPACECRAFT NEEDED.

6PS TRACKING

PR INCI PLE: MEASURES WHOLE FIELD (ZONAL AND NON-
ZONAL) BY TRACKIN6 OF A LOW SPACECRAFT CARRYIN6 A
6PS RECEIVER, BY SI6NALS FROM THE 6PS SATELLITES.

REQUIREMENTS: ADDITIONAL RECEIVERS ROUND THE
WORLD TO CORRECT CLOCK ERRORS IN TRANSMITTERS AND
ORBITING RECEIVER

LIMITATIONS: HIGH PHYSICAL STABILITY OF VARIOUS
COMPONENTS NEEDED. BUT NO 600D CONTROL ON CONDITIONS
ON 6PS SATELLITES. OR ON 6ROUND RECEIVERS; DRA6.
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GRM-TYPE SATELLITE SATELLITE
TRACKING

PRINCI PLE: MEASURES WHOLE FIELD WITH TWO DRAG-
FREE SPACECRAFT A FEW HUNDREDS OF KM APPART ON SAME
ORBIT. TRACKIN6 EACH OTHER BY TWO WAY DOPPLER/LASER.

REQUIREMENTS: DRA6 FREE SPACECRAFT, HIGH
PHYSICAL STABILITY OF COMPONENTS.

LIMITATIONS: REQUIRES VERY 600D NON-
GRAVITATIONAL FORCE COMPENSATION (DRA6. RADIATION
PRESSURE. ETC.).

CRYOGENIC GRAVITY GRADIOMETER

PRINCI PLE: MEASURES WHOLE FIELD BY SENSING
DIFFERENCE MODE BETWEEN ALIGNED ACCELEROMETERS BY
SENSIN6 WITH S.Q.U.I.D.S. THE MAGNETIC FLUX DISPLACED BY
SUPERCONDUCTING PROOF MASSES.

REQUIREMENTS: SIMILAR TO 6RM-TYPE SAT.-SAT.
TRACKING.
HIGH PHYSICAL/MECHANICAL STABILITY, REJECTION OF
COMMON MODE.

LIMI TAT IONS: SELF-6RAVITATION. VIBRATIONS,
RESIDUAL COMMON MODE ACCELERATIONS. SCALE FACTOR
CALIBRATION.
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CHARACTERISTICS OF A
GRADIOMETER MISSION FOR
MAPPING TEMPORAL CHANGES IN
GRAVITY
ACCURACY: 10-5 TO 10-6 E FOR A BANDWITH
OF 0.01. Hz

BECAUSE CHANGES CANNOT BE MEASURED DIRECTLY ON
EARTH, A GOOD DEAL OF NEW SCIENCE CAN BE OBTAINED.

SIGNALS HAVE LONG SPATIAL WAVE LENGTHS, SO THERE IS
SLOW ATTENUATION WITH ALTITUDE: A HIGH ORBIT (600-
1000 KM) CAN BE CHOSEN.

WITH ORBIT 600-1000 KM HIGH: MUCH LESS DRAG THAN
FOR GRM MISSION. DRAG FREE SYSTEM CAN USE HELIUM
BOILOFF OF CRYOGENIC GRADIOMETER FOR PROPULSION. SO
MUCH LESS WEIGHT THAN USING HYDRAZINE AT 200 KM (MORE
THAN ONE ORDER OF MAGNITUDE LESS FOR PROPELLANT
ALONE)

A SPACECRAFT ALREADY IN DEVELOPMENT (GP-B) COULD BE
USED (DRAG FREE USIN6 HELIUM BOILOFF. CRYOGENIC
PAYLOAD. ONE AXIS SPIN STABILIZED. PRECISE ATTITUDE IN
INERTIAL SPACE DETERMINED BY TELESCOPES. SPIN MAY
HELP SEPARATE SELF-GRAVITATION AND OTHER SPURIOUS
SIGNALS FROM THE DESIRED GRAVITATIONAL INFORMATION.

BECAUSE OF GREAT SENSITIVITY REQUIRED. PROBLEMS LIKE
SELF-GRAVITATION CAN BE DIFFICULT TO SOLVE.
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Inversion of Airborne Gravity Gradient Data,
South-western Oklahoma

D. W. Vasco (Center for Computatinal Seismology Lawrence
Berkeley Laboratory, Department of Geology and
Geophysics, University of California, Berkeley, CA
94720; 415 486-7312)

CL.ayIL (Geophysics Laboratory, Hanscom AFB, MA,
01731 ;617 377-3078)

We present a preliminary Interperatlon of gravity
gradient anomalies. The diagonal elements of the gradient
tensor, as recorded by the Bell airborne Gravity Gradient
Survey System (GGSS), are used to compute the basement
topography In south-western Oklahoma. This is
accomplished through a non-linear inverse procedure
based on the conjugate gradient algorithm. In general the
resulting model contains a ridge of shallow basement
material (4.0 km) trending east south-east. This ridge is
bounded on the north and the south by troughs In the
basement which extend as deep as 10.0 km. The gradient
field which results from this model fits most of the GGSS
observations within their estimated errors of 12.0 E. The
depths also agree with a set of available oil well depths to
the basement and with inferred faults in these igneous
rocks. In order to assess the derived solution, the problem
was linearized about the final solution and linear
parameter resolution and parameter covariances were
computed. For the most part these basement depths are
well resolved and the resolution matrix is diagonally
dominant. Futhermore, the parameter standard errors are
small, the majority are less than 1.0 km. Only 26
parameters out of 98 have errors larger than this.
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INVERSION OF AIRBORNE GRAVITY

GRADIENT DATA, SOUTH-WESTERN
OKLAHOMA.

D. W. VASCO & C. L. TAYLOR

GEOPHYSICS LABORATORY (AFSC)
HANSCOM AFB, MA 01731-5000
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AERIAL VIEW OF ORIGINAL SET OF TRACKS.
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AERIAL VIEW OF TRACKS AFTER PLATFORM
ACCELERATION EDITING.
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For a prism defined by:

1 21 2 21 32

where t are the source coordinates, then the
diagonal elements of the gradient tensor
are:

T x= pG arctan(42.3/4 r) I I I
3x 2 1 a P Y

T pG arctan( i /4 r) II
YY~ 13 2 a,

T =pG arctan(l/r)j I I
ZZ1 2 3 a,3

where: G = gravitation al constan t
p =density contrast
r = sourc e-recei ver distan ce

212



The objective functional is:

m N
pG2I[(Ti-__arctan(4 2 I/ r)j 11, )2+i=.1 XX 1=1 2 3 1 az3

0 1 N
(T -Jarctan / -'r), 11 1 )2+YY=I 1 3 2

N
(T 1-XArctan( /4 r)J I

Z11 123
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Condusions: l

*The signal, with a maximum of 57.5 E is

above the estimated noise level of 12.0 E
and coherent between the seven tracks.

*The basement model presents a coherent

structural feature trending west-northwest to
east-southeast. This ridge of higher density
material agrees with known basement faults.

*The model resolution of a majority of the

prisms is adequate and the standard errors

are quite low, most less than 1.0 Km.

*The derived solution agrees with known

basement structure and available oil well
data.
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DEVELOPMENT OF A MOBILE GRAVITY GRADIOMETER FOR GEOPHYSICAL EXPLORATION

FJ van Kann, MJ Buckingham, MH Dransfield, AG Mann,
PJ Turner, R Matthews, RD Penny and Edwards,

Physics Department,
The University of Western Australia,
Nedlands, Western Australia 6009.

We present a description of a superconducting gravity gradiometer designed for
geophysical use. The initial target sensitivity is 1 Eo/JHz in a frequency band below
1Hz.

The OQR instrument, which measures an off-diagonal component [xy] of the gradient
tensor, consists of two perpendicular sensors with parallel pivot axes aligned along the
vertical z-axis. This configuration of dual Orthogonal Quadrupole Responders enables
rejection of angular accelerations about the pivot axis. Rotation about each of the other
two axes is controlled independently.

Each of the quadrupole sensors Is carefully balanced mechanically at room temperature
and, since the pivot is integral to the sensor, this balance is preserved at low
temperature. Residual off-balance compensation and matching between each sensor in the
pair is achieved magnetically using superconducting trim coils.

Motions are sensed by pairs of superconducting pancake coils arranged In current
differencing configurations with SQUID readouts. Apart from that desired, the signal
from the primary pair of coils contains small residual terms resulting from the common
mode accelerations perpendicular to the pivot ax , . Signals from a set of secondary coils
are combined passively to eliminate the effects of tne common mode acceleration vector.
Residual sensitivity to z-axis angular acceleration is treated In a similar way.

Rotation about each of the other two axes is measured optically and controlled by a servo
referenced to a room temperature Inertial system. The latter is a gimballed platform
stabilised by a pair of phase modulated fibre optic gyros to about 2.10 . 5 (radlsec)lqHz.
The cold gradiometer package is also mounted on gimbals, in this case driven by
diamagnetic actuators. The thermal environment in which the package is mounted is
carefully controlled and maintains an operating temperature constant to within a few tens
of pIK at about 5K.

Many of the gradiometer's features have been proved under laboratory conditions and we
are presently engaged in test!ng the complete package prior to transferring it and its
support systems into a mobile laboratory in readiness for field trials. Moving base tests
are scheduled to begin before the end of the year at the Dongara natural gas fields 300 km
north of Perth in Western Australia.
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Spring balance sensors
(in line or shear gradients)

same mechanism for common force and differential force stiffness

= trade off:
low stiffness for high sensitivity
high stiffness for high CMRR (dynamic range problem)

Beam balance sensors
(shear gradients)

different mechanisms for common force and differential force stiffness

* low differential force stiffness - 1 Hz = high sensitivity

* high common force stiffness -1 kHz = high CMRR possible

- tune CMRR during assembly to > 125 aB
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= Sjic( gk(O) Mv1 + I(O) MjI+ ....)

gi =* gi + ai

r=j ri + Rij = G1, i.e. symmetric + antisyrnmetric

MY MZ 0 0 rr,, -COYC
0 ZZ- XX 0 rz -wt~oj~

0 0 Mxx- MYY) rx y -()X(

(MYY+Mzz 0 0 a

- 0 Mzz + Mx 0 a I
0 0 Mx + c ) 'Xi

rz j(1 2 -b2) GXY m =mass, I= length, a =b =width

Two bars:-

(;CC- re) + A @A + B) + AAx~x + AAYYj + (ASxx - ASyy)3 y

I I II
signal common mode residual dipole induced dipole

2 (12 - b2) (rxy -03xOY,)

trA + TB = 2 RL (12 + b2) (a,

K= earth rotation rate = 7.3 10- rad/sec = 150Air

So~y,8w., = platfcim angular velocities

cooy 2 (sine cos4.&iy - cosO.8&o,)
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PIVOT DEFORMATION
UNDER LOAD

TORSION STRETCH s-BEND

a b3  a b a b3

3Hz 5kHz lk-z

BAR DEFORMATIONS IN A
FORCE FIELD (IDEAL PIVOT)

-H- STRETCH

-+1- FLOP
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Basic detector noise

Equivalcnt gradicnt noise from amplificr l/f and Btownian tlnns

0.4

Equivalent 

o.

aradicflt 0.2
noise(EW/ 11Hz)

o , i........ .... . ... . ....... . - - 1 .. .. . . . . ,o

*1.05
0.00' 0.01 0.1

Signal frequcncy (lz)

Coloured noise

0 down conversion

0 thermal

* flux creep
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ROTATIONAL STABBLISATION
SQUID

ELECTRONICS[ Q1 O SQ2IN R I LD T r AG
SERVO

SEV xx,y,z AccelerometersACE RO TR

SERVO 0: GIROECPEACE~

Cd FIBER OPTIC D1
GYROSCOPE f~y

TOROENIC
ACTA6OST NRI A DIGITO IN ERVOC
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RESISTIVE ANODE DETECTOR

! I

BANGLE SENSOR
BEA SPI

MOUNTED ON INERTIAL
850nm SOURCE STABILISED PLATFORM

SLENS

NOISE LEVEL 0.l1 rad/4Hz (61ideg/4Hz)

10lz to IkHz

DYNAMIC RANGE 0.01tad (0.6deg)

COLD MIRROR ON GRADIOMETER

*22I



0~

cis

0
.0

0

x
4) 0

0 .

o0

Cd 0

-0

.0 a
040

2300



C-1

231



*1
LI-::; -

---.-.- 

___________________

~ 

-
- -

- - -

I 2zc-np.'

z 

I

-

-

'- 

Q

I 

Z

I 
---

'

~- 

~- )- 
-~ ~~~4

- -a

-- 
..---...---.--.--...

'.-.---- 

I -

-a
I 

-~

I 

-

V

w

232



S .. . . . . :4 1..
C"4 '. I . ..

(, r'77 .. .. ..

f. .- F

,--- --- -

.... 7 "r,., ," 77..............
'07

1-44

o~ 
. : , 4 4 . , ..... • ~~.. . . i. . . .: ;

, , . t....I

.I L

233.

~~~. ... . . . . ... .. .. . ....... r : • • .---
I 

. ... . . . .:. 
. .

*" . .
. *g*

5 t . • :: : : : .. : L: .
I' 

".' 
' -.. 

T :
( , .. . -.:.rr .... .-."N

!30

. . . i,. . • , , * • • •
I 

i" 

I "

' " : ' : !233



Set up Procedure

Test and calibrate

Servo z axis

Coarse match HF scale factor
(null HF z axis dither)

Coarse tunebaspig
/ [ ($spectrlumanlalyzer )

Fine tune bar springs
(null LF z axis dither

Fine match HF scale factor
(null HF z axis dither

X,Y linear accel,& Temp null

~t

Servo x & y axes

E -Measure gradin
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DEVELOPMENT OF THE MODEL III
SUPERCONDUCTING GRAVITY GRADIOMETER

M. V. Moody, Q. Kong and H. J. Paik

Department of Physics and Astronomy
University of Maryland, College Park, MD 20742

The development of a three-axis superconducting gravity gradiometer,
SGG, is continuing at the University of Maryland. The instrument is being
developed under a NASA contract for the purpose of precision gravity ex-
periments and gravity field mapping from an orbiting platform. Testing of
the Model III SGG has recently begun. This device was designed to meet
the sensitivity requirements of NASA for a global gravity mapping mission
(3 x 10- 4 E Hz-1/2).

The SGG utilizes three pairs of spring mass systems in which proof mass
motion, induced by a gravitational force or an acceleration, modulates su-
percurrents. The superconducting circuits are configured such that these
supercurrents are passively summed and differenced before being measured
by SQUID amplifiers. Also, in order ta operate in both terrestrial and space
environments, the proof masses in the SGG use a superconducting levitation
scheme which has minimal effect on the differential mode spring constant.

The primary enhancement of the Model III over previous designs is the
incorporation of a passive superconducting negative spring. Using the nega-
tive spring to cancel the spring constant of the mechanical spring, the noise
contribution of the SQUID amplifier can be suppressed. The results of the
Model III SGG tests will be presented.

Using the SGG to measure the Laplacian of the gravitational potential,
a composition independent, null test of the inverse square law of gravity can
be performed. Sensing tilt of the SGG platform with a laser and photodiode,
we have demonstrated that tilt is the primary error source in this experiment
when using a 1600 kg pendulum as the source. Methods for reducing this
and other errors using a three-axis SGG will be discussed.
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DEVELOPMENT OF THE
MODEL III

SUPERCONDUCTING GRAVITY
GRADIOMETER

M. V. Moody, Q. Kong and H. J. Paik

Department of Physics and Astronomy
University of Maryland, College Park, MD 20742
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ACCELEROMETER CROSS SECTION

0 0

I. _ 10.2 cm =

ILS"
: ::.'::' ''.';:::-:,.,PROOF

SMASS

JUNCTION
BOX

COIL FORM .. !iii:!.£..: -HOUSING
HOLDER-
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EXPERIMENTAL CONFIGURATION

4-MICROMETER

PHOTO-

CHOPPER,. IDiolBA

SPLUTTER
LASER. . * E LINEAR MOTION

______TRANSDUCER

.. :7I

fi. ITM

COMPUTER CONTROLLED TURNTABLE
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SCHEMATIC OF MODEL III SGG

CANTILEVER SPRING

0o0
rj .0 -

10

l L

j l dl to d ta

L-V1A42 SQCIRCUIT
00

L. ncrase .''only'', co':mon.mode .-.

0 M2

SENSING CIRCUIT:
Adjust ratio of Idl to Id2 to balance out

* sensitivity to common-mode accelerations.
LEVTATiON CIRCUIT:

Energy (0 2/2L) is constant for differential motion.

.increases only common mode w,.
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INTRINSIC SPECTRAL NOISE

S(f) 8 [k9 2nrf (27Trf)=EA(f)lm12f L e Q( f) + // J

= BROWNIAN MOTION + AMPLIFIER

FOR BEST COMMERCIALLY AVAILABLE SQUID:

EA(f) = 3 x 10-30 J Hz"1

TO REDUCE AMPLIFIER NOISE CONTRIBUTION LOWER fo

1. In gE use "push-pull" levitation.

f0 = 8 Hz, S(f) = 2 x 10- 3 E Hz 2

2. Superconducting negative spring.

fo =  1 Hz, S(f) = 2 x 10- 4  E Hz 2
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SUPERCONDUCTING NEGATIVE SPRING

L R- AXI --- ENERGY =t 2 1n2I2V(O)/2V(x)

NEGATIVE SPRING
ENERGY vs. POSITION FORCE vs. POSITION SPRING CONSTANT vs, POSITION

0.0019 0.4 -90

0.00107 -T0

-0.2

0.00103 -0.4 L00-3E-04 -iE-04 IE-04 3E-04 -3E-04 -- 04 IE-04 3E-04 -3E-04 -1E-04 IE-04 3-04

NEGATIVE + LINEAR SPRING
"bom0.05 500

0.03 40D

0.01 300

0.001M
-0.03 100

0.001082 
0-0.05 ,

-X-04 -t-04 IE-04 3E-04 -3E-04 -lE-04 I-04 3E-04 -3E-04 -t-i)4 IE-04 3E-04

251



SGGM NEGATIVE SPRING TEST

1500

1200

T - 19.23 12+1440
E 900o

o 600

E

300

0
0 20 40 60 80

CURRRENT 2 (A 2)

25?



PRIMARY ERROR SOURCES

P = 1

+ CENTRIFUGAL ACCELERATION

+ COMMON-MODE ACCELERATION (TILT)

(1/I)(6n_, + hM).()xgX

+ ANGULAR ACCELERATION

6n+l xhia)
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CALIBRATION AND ERROR COEFFICIENTS

ADJUST DRIVE CURRENT IN TRANSDUCERS TO OBTAIN
X TILT, Y TILT OR VERTICAL SHAKING.

COMMON-MODE CALIBRATION
4 -4 A9 = MGg

GRADIOMETER CALIBRATION
1"(2f) = [1 - (hn)2]Q 2(f)

MEASURE MISALIGNMENT
61(f) = -(1/1)6_,"exE + 6i.xI'27fe

6n-, = 3.4 x 10- 4  (adjusted at room temperature)
6n+i = 5.0 x 10-3  (not adjusted)

DETERMINE CENTRIFUGAL ACCELERATION IN TWO DIMENSIONS
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CENTRIFUGAL ACCELERATION
PERPENDICULAR TO AXIS

10-2

N-r
Ii
Lii

lo-4

I-D

0 5 10 15 20

FREQUENCY (Hz)
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CENTRIFUGAL ACCELERATION
PERPENDICULAR TO AXIS

10-1

N

%-jo. 10-1
N

10-

LLL

10-2 0.02 0.03 0.1 0.2

FREQUENCY (Hz)
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DIFFERENTIAL-MODE SENSE

101
N
r

z

10",

10-2 0.02 0.03 0.1 0.2

FREQUENCY (Hz)
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COMMON-MODE SENSE

E

z
0

10-

-i
-J

00-

10-2 0.02 0.03 0.1 0.2

FREQUENCY (Hz)
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NOISE IN THE SENSING CIRCUIT

FLUX LEAKAGE

out: 0(l) =0l- a(l - e-"7) I

in: (l)= ao(1 e"

T = 50s, a = 2 x 10-9, with B = 0.5 tesla

BALANCE BOTH SENSING CIRCUITS

COHERENCE Bv %vpHn

mag

Fxd X 0 Hz

POWER SPEC2 ___ Ay 50%Ovl-p Ham,

m

Log - _

Mag____ 
_

rms- -

V/rHz 1--

20.0__-

FxdX~ 0 H
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Composition Independent

Null Test of the Inverse Square Law of Gravitation

Test for non-Newtonian potential of the form

¢(r)=Gm(1 +ae a)r

V2f) 0- a -r/rX~

I " '

M y

2rr

TILT IS THE PRIMARY ERROR SOURCE
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REDUCING SENSITIVITY TO TILT
IN A SINGLE-AXIS GRADIOMETER

6r(c,) 6'n - ))'9

- ' -),

1. ALIGN A HORIZONTAL

2. ROTATE ABOUT M TILL 6n_- II E
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Removal of tilt and scale factor mismatch errors
with a three axis gradiometer.

S= aFI + hi i* ' x -)

r- 'r' + h X ×
2' 22 h9 'E

7r3+ h3fi*xg

+ T 2 h3 33

/31 LAt , n-1/'-*h ,nf

- ~h h 3j r p I ( / 3 33 lI U I T nr3 / E

Rotate gradiometer 120 degrees twice and sum,

2 h,
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DEVELOPMENT OF A SUPERCONDUCTING SIX-AXIS ACCELEROMETER

E. R. Canavan, H. J. Paik, and J. W. Parke

Department of Physics and Astronomy
University of Maryland, College Park, MD 20742

The three-axis superconducting gravity gradiometer being developed at

Maryland for an orbiting gravity mapper requires very precise platform

stabilization, particularly against angular motion noise. The key component of'

the stabilized platform is a superconducting six-axis accelerometer. The

accelerometer can also function as a complete inertial navigation system, and

with the gradiometer it forms a gradiometer-aided inertial navigation systeii.

The device senses the motion of a single levitated niobium proof mass with

respect to its housing using superconducting AC inductance bridges and a

SQUID amplifier. The proof mass, composed of three intersecting square

slabs, fits inside a housing of complementary shape formed by 8 titanium cubes

mounted in the corners of a large hollow cube. The face of each titanium cube

adjacent to the proof mass holds a levitation and a sensing coil. The 24

levitation and the 24 sensing coils are connected to form circuits that provide

levitation and sense displacement in each of the 6 degrees of freedom.

The first prototype of the device has been built and operated successfully.

The measured values for resonance frequency, sensitivity, and other

parameters matcti very well to those given by a detailed analytical model. The

model predicts that by optimizing electro-mechanical coupling, which al.

present is small, and using a better SQUID, the accelerometer should be able to

achieve a base noise level of 1013 g/Hz and 10"10 rad/s 2/Hz. Larger coupling

should be achieved in a prototype under development.
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Development of a

Superconducting
Six Axis

Accelerometer
E.R. Canavan, H.J. Paik, & J.W. Parke,

University of Maryland,
College Park, MD 20742
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Goal:
To develop an accelerometer that is:
" Extremely sensitive
" Compact
*Measures all 6 degrees of freedom
*Compatible with the SGG

Principle of Operation:
e Single magnetically levitated mass

== responds in all degrees of
freedom:

q-- q, q ={rx, ry, rz, 0x, 0y, Oz}

• Displacements alter the inductance
of 24 coils surrounding the mass:

L = L0 + Aq + O(q 2 )

9 Coils are arranged into 6 AC
inductance bridges, each sensitive
to motion in a different degree of
freedom.



Sensing Circuit

Oscillator

Upper L
coils 0 SQUID

Lower coils

Operation:
*Circuit analysis gives:

-Q =(L 2L 3 - LjL4) iosc
iSQ ) L(L1 + L2XL3 + L4)+ LSQ 1 Li

*By geometry,
Lj, L4 = Lo - Asrx ; L2, L3 = Lo + Asrx

A AsiQsc)isQ- Lo + LQ rx

=SQUID output, after demodulation,
is proportional to rx.
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Levitation Circuit
Proof Mass

Coils --. ///////////il/l/

Lf

from Feedback SI

controller Heat Switch
Pulsing heat switch while applying

current IL traps IL in the loop.
Choose IL to minimize q.

V2

2(Lf +1 Li)

_ (4Lo + Lf)I2, 2 8A212r

2 4Lo + Lf

SfDC = 2ALI 2 , k L 16ALIL
4Lo + Lf

* Feedback current adds to 'L.
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Multiplexed Operation
All 6 sensing circuits are connected in

series with a single SQUID. Each
bridge is driven at a different
frequency oi and the output of the
SQUID is fed to 6 lock-in
amplifiers where the signals from
the 6 bridges are demodulated.
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Materials Considerations
*Coil Forms
Material: Ti6A14V
Problem: Tc sensitive to heat

treatment; in our case,TC>4.2K.
=Need temperature controller to

maintain SSA above TV.

* Superconducting wire
Material: NbTi
Problem: Alloy superconductors are

Type-II => drift in IL due to flux
creep = low frequency noise.

Originally used Type-I Nb, but had
significant occurance of thermal
stress breakage. (Improper
drawing process.)
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AtvALT1[cV~l. tlOit&
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MrOTION:
PR~OOF MlASS 'oriom w. A. i,

HJOU31N.G PESC&IB9D15 R'( Yce,rr
HOU3IA& moro Axer wv,'IEATIAL

FlkAAZ 6cA1I>f~ %

ttc.A7, 0e LA6IAADfGtANA14
tkjV(AsG T14E E0QUTIOAJs 0F MorVO/.'
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rt'e AAJGQLAA EQU*rIOAJS Or
toi AhtE NOAJLIAEARj.

TO FIRST O~RER
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2. ChLCULATION OF POTEAMrIAL
ChixuLi~rc V(O6/) As iAJ

imorobvc.rom, Bur imwcc o Ap

T~Atis: La L Ax f'4L
CALC.PUL*reMG V ADA THE LEVITRPIoA

AND4J SEAJS4Jocc~iuirs PO0e EACI'v

AX1S

v~ vo ff (ti rx' + r

*o (sxral r. 4) (Pal)o.O~6

40 bO6g04104 SfiIAIG C.OSTA~rs

rIL & + Aw 3
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CRLCUIOAiPe TA$sFBa Fva4cr'IopJ

f & 41* $j 0 tJ (REA eFO EXAMM1G,

VAtir TO USE COsJrA0&w49*

(SPIRLL_ s 0 L.ESS )~coutSLA1)
--w qv - a - 0 -, * .10 w-0 1 * W W 0 0V w IV v lo W,

CALCUtuATIN6 5E#OSDA16 CIA~cUr TAhjFe
0

lF)CA fOJl ~m (AS I#J ItJTAObUJf0OM)

WJOre%,,AkE ADE VeRlYV-EfAPAJr PAtIN~



'i MI NIMUMl )STECTABLE ACCELERRi&T
TWO FUMDI)V1EJL NOSe S60JCES1

*B~owtN1AN MOTI ON NOISE:

ACCELRAPTOAJ Se.C*AAL l1LEMf5lTlt

*SQIJID A ~PIANI

USiADG IChMI VLfrTE tieur

CoACUr ,4OesE 094TAAL DgA$#ITY5N

To eqiJvAI.UJT kcceLFeATiopM

WI9~Em E.Pol~ couN.'AIG corFFec~re4?
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FOA Tfte ANj(.uLAA VtoofES OF

FAEEDOJI, 06014AP
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COMPARISON OF MODEL WITH

EXPERIMENTAL "RESULT5

I) "RESQNANT FRE.QUENCE5

TO CALCULATE cO r(4Je. NEED AL, S, ,s

ComrPuTE INDUOTANCE ?ARAMETERS FRO
FORCE "BETwEEN SET OF CONCENTRIC.
LOOPS AND THEIR IMAGE CLM4 RENT5

X
Superconductivity

d , ._ _ R, oop I Pkne

Y

12 d+x

_)loop 2

z

EXPAND AND NUMEJCALLY INTEG-ATE

SIMILAIRLY TORQUE EQUATION :o
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SUBSTITUTINS "4TO EQUATION FOR
GET

(~~VAo LI*C __

I 
I Av~

rx a1a2o
rz17.8 18,2
a 13 3 150 MOE XND T
OY 39 MONE~PED
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Z) SENSITIVITY

TO CALCU)LATE IIx , MUST KNOW Is

PROBLEM: 'BRIDGE DRIVEN WITH
TANK CIRCUIT (TO IMPROVE
GAI)N'REDUCE RF INTERFERENCE)

SOLUTION: MEASURE Z(W)
- CALCULATE CRCUITGAI!
0-> COHPUTE IS

1RESULT5

<()X OX>XP K Haxl>IODEL

I 1.6 w o5  2 .4ED
Ox21 x 02I*

ez 4.7W%6 4,1xI ,sc

REASONA'BLT GOOD FIT
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5) MINIMUM SIGNAL

FOR QUANTUM )E56N 5QUIDS

E I62 8"J/H I 05 af 16 so ,r&/ I"
ACTUALLY SEE THIS LEVEL IN MEASUREHENT

POWER SPEC . 2OAvg___ O.Ovlp Hann

50.0

Fxd 0 2

EYfPERIMEN1ALd

qBWI~~~in I7IO vA 1006O

1 07 oo Y I" - 8'

61 2R,1E 3L.vt J4W w+ 8/. 1011

279 NOT 5 *4 P BELLOW POTN1K !



OTHER "RESULTS
I) LOW FREG9UENGY NOISE

'U4

zz
w

0 ,r (57
w
-J

C-)
.)

QU

IlEAIO i I, I I I I I I lil

162 16,

FREQUENCY (Hz)

NOTE: SURF PEAK CLEARLY VISIBLE
$5I11IC NOISE SHOULD HAVE MINIMUt

AT 10Qo Ha3554
9 LoW FREG, NOISE ULHITh SMA

BELOW ,'- I0"4 Hz

LOW FREGt NOISE C .1.
?2n



3) FEED "BACK
HEED FOR CONTROLLER:

* LINEARIZE OUTPUT
*1REDUCE CRO!6 COUPLING
o INCREASE 'DYNAMIC *RANGE

USE PID CONTROLLER
iF:- h t- l91 30Avg 85%Ovlp Hann

- , z- = --T
87.5

OPEN

L2.
-:0. c -

CLOSEDLOOP

-2-4.0

.0

= F:EED2 ACK ' It*--N UBA4NDWIDTN



CROSS COUPLING
5TRONG CROSS COUPLING* AY NELe HIHO

CONTROLL"2
MEASURE ON AND OFF "DIAGONAL RE5PONSE

' EC RESP

0.0

Phase NOISE'

e gOU

0.0

-360

j yePo u

phas e

-20 .0

FxdX' 5 Log Hz 50

FIND OFF-DIAGONAL GAIN >10 8 BELOW

)IAGONAL 4'5TYEM "OIAONALLT bOOHINANT
-bCAN USE SISO CONTROLLER



OPTIMIZATION
ULTIMATE ?ERF:ORMANCE

b (~r)o'r T

*FOR 'BEST SQUW~s) ~v

Va r11

15 1MILARLT

~G,GK %ioL
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f (1 7 ___+ ) 1 w

UING SE~pERATE SENSING CIRCWTS:

I gMPEDDINCE j ATcOING TRANSftRH6EeSl

=0 DECREASE H,~ Wer,d

uoiNcREASE %A *INCPEASIE TURNS
PeNSlT, AREA

TrabMPROVE COIL
tHATCOINiG
*SINGLE LAYER COILS,

MIODEL T: LARGE, SINGLE LAYER
SENSE/LEV. COIL

FOR Ir vI AMP N~orz
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SUPERCONDUCTING GRAVITY GRADIOMETER MISSION - AN OVERVIEW

Ho Jung Paik

Department of Physics and Astronomy

University of Maryland, College Park, Maryland 20742

Two dedicated space missions proposed for the 1990's hold the promise of

providing data for recovering the Earth's gravity anomaly with unprecedented

accuracy and resolution: the Aristoles Mission and the Superconducting

Gravity Gradiometer Mission (SGGM). SGGM, the more ambitious of the two, aims

at recovering the global gravity field to a precision of two to three mgal

with a resolution of 50 km.

The instrument package of SGGM is a three-axis gravity gradiometer which

is integrated to a six-axis accelerometer for active platform control. The

intrinsic sensitivity of the gradiometer is 10-4 E Hz-1/2 and that of the

accelerometer is 10-13 gE Hz-1/2 in linear acceleration and 10- t rad sec-2

Hz-1/2 in angular acceleration. While precise attitude control of the

Experiment Module is essential to mission success and is also technically most

challenging, pointing accuracy and disturbance isolation requirements of SGGM

are less stringent compared to that of other missions, such as Hubble Space

Telescope (HST) and Gravity Probe-B (GP-B). Thus, they are within the reach

of technologies of the 1990's.

In the recently completed Phase A study, the SGGM study team addressed

the problem of scientific requirements and mission feasibility. At the

University of Maryland, prototypes of the three-axis gradiometer and the

six-axis accelerator are being fabricated, improved and tested. The actual

mission hopefully will take place before the year 2000.



SUPERCONDUCTING GRAVITY GRADIOMETER MISSION

-AN OVERVIEW

Ho JUNG PAIK

DEPARTMENT OF PHYSICS AND ASTRONOMY

UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742

1. SCIENCE OBJECTIVES

2. SUPERCONDUCTING GRAVITY GRADIOMETER

3. SPACECRAFT AND ORBIT

4. DEVELOPMENT SCHEDULE

5. CRYOGENIC REQUIREMENTS

OCTOBER 13, 1989

17TH GRAVITY GRADIOMETER CONFERENCE

HANSCOM AFB, MA 01731
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SPECTRUM OF THE VERTICAL GRAVITY
GRADIENT (EU PER COERF131ENT)
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(b) Coil Form (Titanium)

(a) Proof Mass (Niobium)

I.K

(C) Assembly Drawing (d) Cross Section View

Fig. 5. Six-Axis Superconducting Accelerometer
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